

Marine Composites

Webb Institute Senior Elective

Non-Destructive Evaluation

Eric Greene, Naval Architect EGAssoc@aol.com 410.703.3025 (cell) http://ericgreeneassociates.com/webbinstitute.html

Inspection Background Information

- Determine service life
- Age of vessel and percentage of time used
- Waters sailed
- Ownership history

1958 Winner fiberglass runabout

Safe Haven Marine pilot boat (left) and boat advertised as "used very little" (right)

- Bonded joint failures
- Delaminations
- Moisture ingress
- Core shear failures
- Skin-to-core disbonds
- Voids
- Impact damage

Determine Damage Sources

- Collision
- Fatigue
- Extreme environmental conditions
- Design inadequacy

Boat collision reconstructed by Miles Beam funded by the US Coast Guard [www.boatcrash.com]

- Manufacturing problem
- Grounding
- Poor maintenance
- Thermal (fire, lightning, extreme freeze/solar)

Schematic to illustrate grounding loads acting on hull [Paul Coffin, 2003]

- Visual inspection should always be the first NDE method used, even in conjunction with other methods
- Access and lighting are critical
- Digital cameras, magnification devices and borescopes can be helpful
- Use boat symmetry to highlight anomalies
- Establish a methodology that begins with overall inspection and proceeds to close-up inspection, especially in problematic areas

External Visual Inspection

Path of lightning from entry to discharge

- Geometry (stress concentrations)
- Waterline
- Structural distortions
- Surface appearance
- Cracks
- Blisters

Internal Visual Inspection

Bulkhead separated from stiffener

Inadequate tabbing detail

- Access to structure
- Tabbing integrity
- Watertight integrity
- Machinery and joinery alignment
- Mechanical attachment points
- Correlate external and internal anomalies

- The accuracy of tap testing is very dependent on surveyor's experience
- Digital tap hammers can reduce subjectivity
- Tap testing can be very useful for finding large areas of delamination
- If repair is to be undertaken, grinding to good laminate is usually required to determine extent of damage

Hammer Sounding

Marine Composites Inspection and Repair

Military specification tap hammer

Marine surveyor Greg Davis uses sounding hammer on fiberglass boat hull

Digital Tap Hammers

Digital tap hammer used to examine test panel

Bruce Pfund shown demonstrating his Smart Hammer system [Bruce Pfund Special Projects]

- Resistance type devices more accurate than capacitance devices but require surface penetration
- Capacitance devices will not provide readings with laminates that contain carbon fiber or over most copperbased bottom paints
- Ambient conditions such as recent rain or the presence of dew can produce false high reading
- Moisture meters more effective when used in conjunction with other NDE methods, such as hammer sounding to assess structural integrity

Moisture Meters

Capacitance moisture meter

Resistance moisture meter

Fabricate Test Panels for NDE Study

Marine Composites Inspection and Repair

Beginning of infusion process used to wet-out the outer skin

Hole saw is used to create a 1/8 inch deep void for water to be encapsulated

Inner skin is laminated by hand

Vacuum bag is used to consolidate hand-laminated inner skin

Simulated Delamination for NDE Study

- Heat is uniformly applied to area
- An infrared camera measures the reflected heat
- Defects have thermal properties that vary from the base material – voids may create heat buildup while water ingress will locally cool the area
- Ambient lighting/heating conditions can strongly influence infrared image – beware of surface reflections
- Analysis of heat rate-of-change can provide more detailed information about potential defects

Infrared Thermography

Panel with simulated defects (entrapped water) and IR image

IR image capture

Typical boat inspection infrared thermography images

NDE Study IR Results

Simulated delamination (top) and simulated voids using machined cavities (bottom)

Thermography Case Studies

The surface looks free of defects using visible NDE (left) but thermal pattern shows anomaly when hull is gently warmed by an electric hot air gun [J.N. Allinson Associates]

Thermographic image of void in gel coat confirmed by percussion sounding followed by grinding it out for repair [J.N. Allinson Associates]

- Ultrasonic inspection transmits sound energy through a structure and measures the return signal
- Planar discontinuities will reflect the sound signal back before it reaches the back wall
- It is necessary to know the thickness of the part being measured and the speed sound travels through the material, which is why calibration blocks are typically used
- Transducers are small and require a couplant (water or gel) be applied to tested surface so it is not practical to inspect an entire boat

Ultrasonic Testing

Marine Composites Inspection and Repair

Olympus ultrasonic phased array flaw detector with simultaneous A-scan and S-scan display

Imperium Acoustocam used to inspect test panel with simulated defects

Ultrasonic Case Study

0.429 59.5dB RANGE 0.807 1.0 GAIN 59.5dB RANGE	0.085 1.0 GAIN 67.58 0.409 1.0 GAIN 67.58 0.409 67.58 0.409
MAMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	Gate-A A-START
D-DELAY -0.150in	A-WIDTH 0.800m 0.800m
P-DELAY TEAS KEYS ANGLE DAC ABI ABI ABI ABI ABI ABI ABI ABI	BASICS PULSER RECEIU GATES MEAS KEYS ANGLE DAC MEAS KEYS ANGLE DAC

Carbon fiber mast struck by lightning examined with ultrasonic to find delamination below spreader (left) and delamination under first ply near masthead (right) [Bruce Bandos, 2002]

NDE Study Ultrasonic Test Results

Impact energies on E-glass laminate (left) and corresponding ultrasonic NDE data (right) [data courtesy of Imperium, Inc.]

Frequency	Typical Spot Resolution	Typical Materials	Comments
0.5 MHz	0.31 – 0.39 ins. (8mm – 10mm)	Thick laminates (closer to 1 in./25 mm thick), complex multi-layer composites	Will penetrate almost anything, but resolution is inadequate for many purposes.
5 MHz	0.19 ins. (5 mm)	Thinner solid laminates (0.2 – 0.8 ins/5 mm – 20 mm thick)	Good compromise where max resolution is not required. Can penetrate most materials that are possible to test conventionally.
15 MHz	0.03 – 0.07 ins. (1mm – 2mm)	Solid laminates, single- layer honeycombs	Gives results comparable in resolution to practical production tests.

Effect of transducer frequency on UT inspection of composites [Ginger Gardiner, "Diagnosing the Dark Composite," Professional BoatBuilder, # 123, Feb/Mar 2010]

- With laser shearography, the surface of the laminate is stressed, either using vacuum, thermal or vibration excitation methods
- Scanning lasers are used to compare the unloaded and loaded surface strain fields by "shearing" the image reflected back to the recording camera
- Laser shearography can detect surface displacements as small as 10 nanometers
- Portable vacuum hoods are typically one foot square, so it is feasible to inspect an entire boat, although equipment know is about \$100K

Laser Shearography

Marine Composites Inspection and Repair

Shearography principal [Collrep 2006] and portable shearography device [Newman 2009]

Laser Shearography

Laser shearography used to examine RNLI lifeboats [Laser Technology]

NDE Study Shearography Results

Shearography Case Studies

Full extent of impact damage to hull sandwich construction [Laser Technology, Inc.]

Number of defects per Hull Half - 1997 to 2001

RNLI Severn class detected hull defects over time highlights systematic process failures during fabrication [Laser Technology, Inc.]

Summary of NDE Study

	Defect	Laser Shearography	Ultrasonic Inspection	Infrared Thermography
ion	Min. Size Detected	2 inches	2 inches	3 inches
inat	Max. Depth Detected	1- 2 plies	1 ply	2 – 3 plies
Delam	Overall Effectiveness	good esp. for kissing bonds	can't detect kissing bonds	can't detect kissing bonds
	Min. Size Detected	2 inches	4 inches	2 inches
Ingress	Max. Depth Detected	skin/core interface	skin/core interface	skin/core interface
Water	Overall Effectiveness	good	use higher frequency	very good

Summary of NDE Study

	Defect	Laser Shearography	Ultrasonic Inspection	Infrared Thermography
	Min. Size Detected	1 inch	2 inches	1 inch
ıpact mage	Max. Depth Detected	skin/core interface	1- 2 plies	skin/core interface
lm Da	Overall Effectiveness	very good	good	good
	Min. Size Detected	2 inches	2 inches	1 inch
id	Max. Depth Detected	¼ inch	½ inch	¾ inch
Ν	Overall Effectiveness	fair with thick laminates	good for uniform laminates	very good

Effectiveness of Various NDE Techniques

		Ultrasonics Thermography		Laser Shearogrphy		Tap Hammer			
Defects	Visual	A-Scan	C-Scan	Steady	Pulsed	Vacuum	Heat	Manual	Digital
Adhesive bond failure	0	A	A	В	A	A	В	В	A
Air bubble	С	С	C	C	В	С	В	0	0
Blister	A	C	С	C	В	C	C	Ð	0
Core crushing	C	В	В	В	A	В	C	В	В
Core shear failure	0	C	C.	В	A	A	В	С	В
Crazing	A	0	0	C	С	C	C	0	II
Delaminations	C	В	A	C	В	A	В	В	B
Fiber failure	С	В	В	0	С	A	A	C	¢
Kissing bond	0	В	A	В	A	A	В	C	В
Local impact damage	В	С	В	В	В	A	В	C	В
Matrix cracking	A	C	В	C	C	B	C	0	C
Moisture ingress	C	С	В	A	A	В	A	C	C
Ply waviness	В	0	0	0	C	C	C	0	0
Pit (or pinhole)	A	U	C.	10	D I	D	C	U	U.
Porosity	В	Û.	C	C	В	0	C	0	QL.
Resin rich area	D	С	В	В	A	D	¢	C	c
Resin starved area	D I	Ç	В	В	A		C	C	C
Skin-to-core disbond	D	С	В	В	A	A	В	В	A
Surface cracking	A	0	0	C	C	C	C	Ó	0
Thermal damage	В	С	В	В	В	C	В	C	C
Voids	C	С	B	C	B	C	C	.C	C
A = High (best/optimal) C = Limited (may be used under certain conditions only) B = Average (works generally well) 0 = Net applicable (built and depart the default									

Eric Greene, "Marine Composites NDE," Ship Structure Committee report SSC-463, 2012.

Ship Structural Failures

Marine Composites Inspection and Repair

Mine Counter Measure Ship Collision with Dock

Christian Berggreen, Technical University of Denmark, 2008

Damages can be found either by visual inspection, probing, or hammer sounding of the structure. Damage can be found from indicators such as the following:

- Cracked or chipped paint of abrasion of the surface
- Distortion of a structure or support member
- Unusual build-up or presence of moisture, oil, or rust
- Structure that appears blistered or bubbled and feels soft to the touch
- Surface and penetrating cracks, open fractures, and exposed fibers
- Gouges
- Debonding of joints

Grind Laminate to Determine Extent of Damage

Laminate	Original process used	Repair resin options	* *Typical repair process options
	Pre Preg	Ероху	Pre Preg, Wet vacuum bag, Infusion
	Wet vacuum bag	Ероху	Wet vacuum bag, Infusion
Ероху	Infused	Ероху	Infusion, Wet vacuum bag
	Hand lay up	Ероху	Hand Layup
	Infused	VE, Epoxy	Infusion, Wet vac bag (if epoxy)
Vinyl ester (VE)	Hand lay up	VE, Epoxy	Hand lay up
	Infused	PE*. VE. Epoxy	/ · Infusion. Wet vac bag (if epoxy)
Polyester (PE)	Hand lay up	PE*, VE, Epoxy	Hand lay up

 * Ideally only use polyester for repair if same exact resin is used as in original laminate. Otherwise use VE or Epoxy.

**Default to original designer/builder or laminate engineer recommendations if available.

Meade Gougeon, "Fiberglass Repair Tips," U.S. Sailing, 2013

Recreational Boat Repair Guidelines Marine Composites Inspection and Repair

Depth of defect

Less then 1/32 inch Less then 1/16 inch Greater the 1/16 inch **Repair** gel repair putty laminate

Ply Overlap Requirements

Surface Damage Repair

Partially Through Thickness Damage Repair

Laminate

Single Sided Scarf Repair on Solid Laminate

b) BACKING PLATE INSTALLATION

c) COMPLETED REPAIR

Scarf Joint Preparation

One Sided Scarf Repair Backing Plate Installation Inspection and Repair

Repair Using Damaged Section as Backing Plate Inspection and Repair

Note: Repair Shown With Additional Plies on the Non-Molded Side

Backing Plate Installation - Access from One Sided Repair

a) DAMAGED LAMINATE

Note: Repair Shown With Additional Plies for Added Reinforcement

Planning Composite Repair

Reinforcement Preparation

Iemplate repair plies

Layout Repair Laminate

It is necessary to first determine what materials were used in the original manufacturing process, the matrix resin, fibers/fabrics and their ply orientations

Types of Sandwich Damage

Delamination following impact on a monolithic laminate

Underlying damage can extend to a much greater extent in laminate structures.

Dents in Sandwich Structure

Puncture Damage in a Sandwich Structure

Laminate Splitting

The damage does not extend through the full length of the part. The effects on the mechanical performance depend on the length of split relative to the component thickness.

Heat Damage

A local fracture with separation of surface plies. Its effect on the mechanical performance depends on the thickness of the part.

Both skins may be damaged.

Bolt Hole Damage

The damage could be elongation of the hole causing laminate splitting, or damage to the upper plies.

from Hexcel "Guide to Composite Repair"

Sandwich Laminate Damage Repair

Marine Composites Inspection and Repair

Repair technique for damage to GRP/foam sandwich panels developed for the Swedish MCMV

Sandwich Repair Schematic

Core Repair

Cut through the skin only, outside of the area of delamination

Grind a bevel on the edges of the joint, so the joint repair patch can be faired flush with the surface

Fit a new piece of core material to match the shape, thickness and density of the damaged core material

Inject the epoxy mixture under the skin through each of the holes starting in the center of the delaminated area

Gougeon Brothers Inc., "WEST System Fiberglass Boat Repair & Maintenance," 15th Edition, April 2011

Repair in Way of Through Bolt Failure

Gougeon Brothers Inc., "WEST System Fiberglass Boat Repair & Maintenance," 15th Edition, April 2011

Marine Composites

Small Boat Repair Example

Repair Reinforcement Geometry

Tony Guild, Maritime Technical Services

Framing Repairs

Marine Composites Inspection and Repair

1. 2.

2

Grind laminate 9" beyond detected damage
Repair with structural laminate up to 16 layers for full thickness

 Grind laminate 4" beyond detected damage
Create corner radius with structural putty
Repair tabbing with E-BXM 1708/E-LTM 1808/E-BXM 1708 with 1" taper (smallest first)

Overhead Repair

Osprey Marine Composites

Install Transverse Frames

Osprey Marine Composites

Repair to 120-Foot Motoryacht

Multiple layers of existing fairing

Delamination

Mark area for repair reinforcements

Waterline lamination in progress

Using vacuum bags to consolidate repairs Fosters Yacht Service, Ft. Lauderdale, FL

Damaged Core Replacement

Roby Scalvini, Marine Survey Bureau

The repair should be inspected prior to finishing and the following should not be observed:

- No open voids, pits, cracks, crazing, delaminations or embedded contaminates in the laminate;
- No evidence of resin discoloration or other evidence of extreme exotherm;
- No evidence of dry reinforcement as shown by a white laminate; and
- No wrinkles in the reinforcement and no voids greater than ½" (12 mm). (Voids greater than ½" (12 mm) should be repaired by resin injection. Two 3/16" (5 mm) diameter holes can be drilled into the void; one for injecting resin and the other to let air escape and verify that hole is filled).

The surface of the repair should be smooth and conform to the surrounding surface contour. The degree of cure of the repaired laminate should be within 10% of the resin manufacturer's specified value, as measured by a Barcol Hardness test.

Repair to Offshore Metal Structures

'Clockspring' repair to an externally corroded pipe

Carbon fiber repair of 14 inch tee joint on a seawater return header

"The cost effective use of fibre reinforced composites offshore," University of Newcastle Upon Tyne for the UK Health and Safety Executive, 2003

- In-plane properties are always degraded for repaired composite structures
- 20:1 scarf repairs are more effective than repairs made involving less area
- Special skills, materials and environmental controls required for effective repairs
- Aerospace level repair methods not envisioned for typiccal marine structures
- Single-skin, E-glass laminates are easier to repair than carbon fiber sandwich constructions

