

Marine Composites

Webb Institute Senior Elective

Impact Damage

Eric Greene, Naval Architect EGAssoc@aol.com 410.703.3025 (cell) http://ericgreeneassociates.com/webbinstitute.html

Examples of Impact Damage

Roll stabilizer damaged after grounding (top) and resulting hull damage (below)

Just before 2 a.m., a 1992, 38-ft. Fountain power boat slammed into a fixed, channel marker, ripping a 17-ft. gash in the forward hull & becoming impaled on the steel piling holding the channel marker.

Sailboat hit by powerboat on autopilot in the open ocean

Impact Damaged Boats

www.yachtpals.com

Impact Damaged Boats

Submarine Impact Damage

Marine Composites Impact Damage

SSN 711 San Francisco hit an uncharted seamount in Jan 2005

Internal Damage

Crew repairs damage to ring frame sustained in 50 knot winds on Irish entry in the 2011-12 edition of the Volvo Ocean Race

Guo Chuan/Green Dragon Racing

Stringer damaged from grounding event

Examples of Slamming

Sail

Illustrations of Sail, left [High Modulus] and Power, right [Structural Composites] High-Speed Vessel Slamming Events

Kristoffer Grande, "Prediction of Slamming Occurrence of Catamarans," Aug 2002.

Slamming Phenomenon

Slamming Pressure Distribution

Vertical Acceleration Distribution Factor F_V

 n_{cg} = the vertical acceleration of the craft as determined by a model test, theoretical computation, or service experience

Deadrise Angle

Peak pressures plotted against deadrise angle for 3 different velocities.

Johan Breder, "Experimental Testing of Slamming Pressure on a Rigid Marine Panel," Stockholm, Sweden 2005 Predicted water jet flows and pressure contours in water by LS-DYNA for the wedge with 30° and 60° deadrise angle (scale is 5x for 30° deadrise)

Shan Wang, "Assessment of slam induced loads on two dimensional wedges and ship sections," Dec 2011.

Slam Pressure Distribution

Frederic Louarn and Paolo Manganelli, "A simplified slamming analysis model for curved composite panels," 21st International HISWA Symposium, Dec 2010.

Impact Damage Types

Low-Energy Impact

Pyramid Pattern Matrix Crack from impact.

Medium-Energy Impact

High-Energy Impact

Abaris Training Resources Incorporated

Modeling Impact Damage

Impact rig for the large-scale plate tests

Damage predictions for test

Damage viewed from top (left) and bottom (right)

H.E. Johnson, L.A. Louca, S. Mouring, A.S. Fallah, "Modelling impact damage in marine composite panels," International Journal of Impact Engineering 36 (2009) 25–39

Free-Fall Lifeboats

Marine Composites Impact Damage

Schat-Harding freefall lifeboat

55 meter freefall test

Norsafe lifeboat structural grid

Weigh

Skin-to-Core Bond Influence on Core Impact Damage

Schematic diagram of the instrumented impact test (left) Impact damage area as a function of impact energy for and "high-density" sample following impact 39.3 J (right) sandwich structures: visual inspection and C-scan results hiteglue oinkalue Face/core 900 debonding Impact damage area, mm² -scan whiteglue 800 poleCpinkC-scan pinkglue 700 C-scan wet 600 500 63 400 Delaminations 300 in the laminate 200 80 mm C-scan debonding 40

Illustration of damage observed visually on the surface of the samples subjected to impact 19,7J: (a) whiteglue", (b) "pinkglue", (c) "wet" sample.

Suppor

Piezoelectric

ad cell

120 mm

In terms of impact damage size, in each case the size of C-scan damage area was significantly smaller than in visual inspection of the sample.

K. Imielińskaa, L. Guillaumatb, R. Wojtyrac, and M. Castaingsd, "Effects of manufacturing and face/core bonding on impact damage in glass/polyester–PVC foam core sandwich panels," Composites Part B: Engineering, September 2008

Marine Composites

Impact Damage

Servo-hydraulic Slam Testing System (SSTS)

Elements of the Servohydraulic Slam Testing System (SSTS) including Ram (1), Load Cell (2), Specimen Fixture (3), Test Panel (4), Side Plates (5), and Back Plate (6). Top left is Overall Equipment Setup with Computer Control and bottom Sequence is of Slam Test Event [Mark Battley, University of Auckland & Susan Lake, High Modulus]

Marine Composites

Impact Damage

Slam Testing Results

Marine Composites Impact Damage

Typical Results from Slam Testing in the SSTS [High Modulus]

Servo-hydraulic Slam Testing System (SSTS)

Marine Composites Impact Damage

Shear deformation of R63.140 core beam specimen

Mark Battley, Ivan Stenius, Johan Breder and Susan Edinger, "Dynamic Characterisation of Marine Sandwich Structures," 7th International Conference on Sandwich Structures, Aalborg, Denmark, August 2005

Deflection vs. panel center strain

Servo-hydraulic Slam Testing System (SSTS)

Slam event of 10° panel at 4m/s with transient FEA predictions. The blue vertical line represents the water surface, and the black line full immersion of the panel

The dynamic panels have higher deflections relative to bending strains, confirming that the load distribution is not well represented by a uniformly distributed pressure. Under dynamic loading the transverse shear is more significant than bending compared to a uniformly loaded panel.

Mark Battley, Ivan Stenius, Johan Breder and Susan Edinger, "Dynamic Characterisation of Marine Sandwich Structures," 7th International Conference on Sandwich Structures, Aalborg, Denmark, August 2005

- The testing method used for characterization of core materials can have a significant effect on the shear strength obtained.
- The peak ratio of edge strain to center strain increases with velocity of impact
- Slam-loaded panels are subjected to higher shear loads relative to bending than is the case for uniform pressure-loaded panels.
- There are significant performance advantages for high-elongation foam cores in slam loaded hull panels (few scantling codes distinguish between rigid, low elongation cores; medium elongation foams; and high elongation linear cores).
- A Slam Tester larger than the SSTS is required to break panels of interest to the marine industry.

Design for Slamming Safe Haven Marine's Interceptor

Marine Composites Impact Damage

Photographs showing Pilot Boat operating conditions, including storm with 100knot wind gust and 10 m waves [www.safehavenmarine.com]

Isophthalic gel coat to minimum 10mm (300 & 2 x 900gm/m² layers) (white pigment used below water line to prevent osmosis) 300gm/m² using isophthalic resin. Composite as follows-900gm/m² CSM. isophthalic resin 300gm/m² CSM stitched in combination to 600gm/m² Woven Roving 900gm/m² CSM 300gm/m² CSM stitched in combination to 600gm/m² Woven Roving 900gm/m² CSM 300gm/m² CSM 300gm/m² CSM 300gm/m² CSM

The hulls scantlings are very closely spaced @ 500mm centers giving a 4300mm panel width, the frames themselves are a huge 150 x 150mm resulting in a massively strong structure

Operator Tolerance

Acceleration limits for operator fatigue and injury

Frank DeBord, Karl Stambaugh, Chris Barry and Eric Schmid, "Evaluation of High-Speed Craft Designs for Operations in Survival Conditions," 3rd Chesapeake Bay Powerboat Symposium, June, 2012.

RHIB Shock Mitigation

Marine Composites Impact Damage

SBIR Program Objectives

- Low Section Framing
- Membrane Structure
- Suspended Cockpit Design
- SharkSkintm Coatings
- Air Support
- VARTM/Infusion Manufacturing

Helm Deck (green) and Hull (red) acceleration data seems to indicate peak g values are reduced by over 50% between the hull and the deck

Scott Lewit, Structural Composites, Inc.

Karl Reque, Composites World

Impact Testing

ASTM D256 - Izod Impact Strength Testing of Plastics

A pendulum swings on its track and strikes a notched, cantilevered plastic sample. The energy lost (required to break the sample) as the pedulum continues on its path is measured from the distance of its follow through. ASTM D5628 - Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart

Impact Testing

Marine Composites Impact Damage

Foreign Object Impact

Marine Composites Impact Damage

Types of Boating Accidents

TOTALS	Vessels Involved 8,591	Fatalities 865
Grounding	390	14
Capsizing	545	289
Swamping/Flooding	252	60
Sinking	210	11
Fire/Explosion (fuel)	274	14
Fire/Explosion (other)	97	2
Collision with another vessel	4,422	81
Collision with fixed object	864	76
Collision with floating object	262	13
Falls overboard	451	239
Falls within boat	139	1
Struck by boat or propeller	191	7
Other	470	29
Unknown	24	29

U.S. Coast Guard Boating Safety Circular 72

The number of shipping containers lost overboard has been reported to be somewhere between 2,000 and 10,000 each year.

Tool Drop Impact Damage

Aircraft Impact Damage Tolerance Criteria

Threat	Criteria	Requirement	
Small Tool Drop	48 in-lbs normal to surface.	No visible damage No non-visible damage growth for 3 design service objectives (DSOs) Accounted for in Ultimate Design Allowables	
Large Tool Drop (BVID)-general acreage	Up to 1200 in-lbs or a defined dent depth cut-off (considering relaxation) based on level of visibility as related to the inspection method.	Barely visible damage which may not be found during HMV No damage growth for 3 DSOs with life extension (LEF) Capable of Ultimate strength	
Large Tool Drop (BVID)-repeat impact threat areas	Consider higher than 1200 in-lbs Consider multiple, superimposed impacts	Barely visible damage which may not be found during HMV No damage growth for 3 DSOs with LEF	
Visible Impact Damage No energy cut-off (VID)	No energy cut-off	Visible Damage with a high probability to be found during HMV No damage growth for 2 times the planned inspection interval with LEF	

Barely Visible Impact Damage (BVID)

Small damages which may not be found during heavy maintenance general visual inspections using typical lighting conditions from a distance of five (5) feet

- Typical dent depth 0.01 to 0.02 inches (OML)
- Dent depth relaxation must be accounted for

Allen J. Fawcett and Gary D. Oakes, "Boeing Composite Airframe Damage Tolerance and Service Experience," July, 2006.

Ballistic Impact

Back face view of panels impacted with .30 caliber projectiles at approximately 880 m/s

E-glass / Balsa vinyl ester

E-glass / PVC vinyl ester

E-glass/Tycor vinyl ester

Delamination at the

acesheet -core interface

Energy absorbed by the Tycor[®] core when impacted at the web intersection was 575% higher than that for balsa and PVC cores. The damage in balsa and PVC core was minimal, indicating lower energy absorption capacity.

U.K.Vaidya, S.Pillay, M.Magrini and P.R.Mantena, "Ballistic Impact Testing of Balsa, PVC Foam, Glass Reinforced Polyurethane Core Sandwich Structures," July, 2009.

Theme Park Boats

