

from Ship Structural Design Concepts by J. Harvey Evans

CONSTRUCTION Solid or Sandwich One-Off or Production

> Determine general geometry and construction method

PRIORITIZE DESIGN GOALS Strength Stiffness Cosmetics Cost

Comparison of Solid & Sandwich Laminates for Out-of-Plane Loads

One-Off Construction Using Wooden Male Plug

Production Construction from Female Molds

Fiber Composition

Fiber	Density Ib/in ³	Tensile Strength psi x 10 ³	Tensile Modulus psi x 10 ⁶	Ultimate Elongation	Cost \$/lb
E-Glass	.094	500	10.5	4.8%	.80-1.20
S-Glass	.090	665	12.6	5.7%	4
Aramid-Kevlar [®] 49	.052	525	18.0	2.9%	16
Spectra [®] 900	.035	375	17.0	3.5%	22
Polyester-COMPET [®]	.049	150	1.4	22.0%	1.75
Carbon-PAN	.062065	350-700	33-57	0.38-2.0%	17-450

Fiber Architecture

Comparative Data for Some Thermoset Resin Systems (castings)

Resin	Barcol Hardness	Tensile Strength psi x 10 ³	Tensile Modulus psi x 10 ⁵	Ultimate Elongation	1990 Bulk Cost \$/Ib
Orthophthalic Atlas P 2020	42	7.0	5.9	.91%	.66
Dicyclopentadiene (DCPD) Atlas 80-6044	54	11.2	9.1	.86%	.67
Isophthalic CoRezyn 9595	46	10.3	5.65	2.0%	.85
Vinyl Ester Derakane 411-45	35	11-12	4.9	5-6%	1.44
Epoxy Gouegon Pro Set 125/226	86D*	7.96	5.3	7.7%	4.39
*Hardness values for epoxies are traditionally given on the "Shore D" scale					

Architecture of Honeycomb and Balsa Cores

Core Material		Density		Tensile Strength		Compressive Strength		Shear Strength		Shear Modulus	
		lbs/ft³	g/cm ³	psi	Mpa	psi	Mpa	psi	Mpa	osix 10°	Mpa
End	End Grain Balsa		112	1320	9.12	1190	8.19	314	2.17	17.4	120
End			145	1790	12.3	1720	11.9	418	2.81	21.8	151
ed	Termanto, C70.75	4.7	75	320	2.21	204	1.41	161	1.11	1.61	11
oan	Klegecell II	4.7	75	175	1.21	160	1.10			1.64	11
Cross-L PVC F	Divinycell H-80	5.0	80	260	1.79	170	1.17	145	1.00	4.35	30
	Termanto C70.90	5.7	91	320	2.21	258	1.78	168	1.16	2.01	13
	Divinycell H-100	6.0	96	360	2.48	260	1.79	217	1.50	6.52	45
tural	Core-Cell	3-4	55	118	0.81	58	0.40	81	0.56	1.81	12
Fuction		5-5.5	80	201	1.39	115	0.79	142	0.98	2.83	20
s		8-9	210	329	2.27	210	1.45	253	1.75	5.10	35
Aire	Airex Linear PVC Foam		80-96	200	1.38	125	0.86	170	1.17	2.9	29
=5	Rohacell 71	4.7	75	398	2.74	213	1.47	185	1.28	4.3	30
Pere	Rohacell 100	6.9	111	493	3.40	427	2.94	341	2.35	7.1	49
Phe	Phenolic Resin Honeycomb		96	n/a	n/a	1125	7.76	200	1.38	6.0	41
Poly	Polypropylene Honeycomb		77	n/a	n/a	218	1.50	160	1.10	n/a	n/a

Comparative Data for Some Sandwich Core Materials

Bulkhead & Longitudinal Spacing Based on Arrangement

Bulkhead & Longitudinal Spacing Based on Design Standards

7.1.2 Single-Skin Laminates

a **Displacement Vessels** The thickness of the bottom shell plating in displacement vessels is to be not less than obtained from the following equation.

$$t = 0.0510s \sqrt[3]{kh} \text{ mm}$$
 $t = 0.0343s \sqrt[3]{kh} \text{ in.}$

t =thickness in mm or in.

s =span of shorter side of plating panel in mm or in.

- k = coefficient that varies with bottom shell plating panel aspect ratio as shown in Table 7.1
- h = distance in meters or feet from lower edge of plating to the freeboard deck at side

7.2.5 Frames

a **Displacement Vessels** In a displacement vessel the section modulus SM and moment of inertia I of each FRP bottom frame, where fitted, to the chine or upper turn of bilge, in association with the plating to which the frame is attached, are to be not less than obtained from the following equations.

$$SM = 19.38chsl^2$$
 cm³ $SM = 0.0102chsl^2$ in.³
 $I = 34.85chsl^3$ cm⁴ $I = 0.0022chsl^3$ in.⁴

c = 0.85 for transverse frames

= 1.08 for longitudinal frames

l = unsupported span in m or ft

h = vertical distance in m or ft from the middle of l to the freeboard deck at side. In way of a deep tank, h is to be not less than required by Section 9.

s =frame spacing in m or ft

from ABS 1978 rules for Reinforced Plastic Vessels

Hull Girder Loads

Bottom Panel Loads

Impregnator at Westport Shipyard

Primary Hull Laminate

Fabrication Considerations

SCRIMP Infusion of Alerion 28 at TPI

Preprep Handling at Ron Jones Marine

Determine General Structural Geometry and Construction Method

VISBY Class Corvette Under Construction at Kockums Karlskronavarvet in Sweden

 Panel Being SCRIMPed at Avondale Gulfport Facility
 LPD 17 AEM/S Under Construction at Avondale

 IBEX 2002 - Session 202 - Eric Greene

Refine Primary Hull Laminate and Stringers

Midship Section of 1/2 Scale Corvette Built by Seemann Composites for NSWCCD

Consider life-cycle requirements of the vessel to determine expected wave encounter in terms of height and frequency

Determine In-Service Profile

USCG 47-foot Motor Lifeboat

Larson 98 Model 226 LXI Advertised For Sale: "used very little"

Consider life-cycle requirements of the vessel to determine expected wave encounter in terms of height and frequency DEVELOP DESIGN PRESSURE Hull Geometry Vessel Speed In-Service Conditions Design Criteria

Develop Design Pressure

Pressures Recorded by Heller and Jasper on Patrol Craft at 28 Knots

Three-Dimensional Slamming Simulation by Germanischer Lloyd AG

Rule-Based Design Pressure

b *Planing Vessels* The thickness of the bottom shell plating in planing vessels is to be not less than either required by 7.1.2a or obtained from the following equations.

1 Where speed of vessel is less than or equal to 31 knots

 $t = 0.0384s \sqrt[3]{kV}$ mm or in.

2 Where speed of vessel is greater than 31 knots $t = 0.0122s \sqrt[3]{kV^2}$ mm or in.

t =thickness in mm or in.

s = span of shorter side of plating panel in mm or in.

k = coefficient that varies with bottom shell plating panel aspectratio as shown in Table 7.1 V = sea speed of vessel in knots

From ABS 1978 Rules for Reinforced Plastic Vessels, Section 7

CONSTRUCTION Solid or Sandwich One-Off or Production

Consider life-cycle requirements of the vessel to determine expected wave encounter in terms of height and frequency DEVELOP DESIGN PRESSURE Hull Geometry Vessel Speed In-Service Conditions Design Criteria

Construction Method

Prepreg/Nomex Honeycomb Core Construction of Hydroplane at Ron Jones Marine

Hand Layup of Solid Laminate Hull at Westport Marine

Initial Material Selection

Reinforcements

Parameter	E-Glass	Carbon	Kevlar [®]
Workability	Good	Fair	Fair
Cost	Excellent	Poor	Fair
Static Strength	Good	Excellent	Good
Dynamic Strength	Good	Good	Excellent
Elevated Temperature Performance	Good	Good	Fair

Resins

Parameter	Polyester	Vinyl ester	Ероху
Workability	Excellent	Excellent	Good
Cost	Excellent	Good	Fair
Static Strength	Fair	Good	Excellent
Dynamic Strength	Fair	Good	Good
Elevated Temperature Performance	Fair	Good	Good

Cores

Parameter	Balsa	PVC Foam
Workability	Good	Good
Cost	Excellent	Good
Static Strength	Good	Fair
Dynamic Strength	Fair	Good
Elevated Temperature Performance	Good	Poor

Determine Panel Size

Bottom Panel Geometry Showing Aspect Ratio and End Conditions

Stress Coefficient as a Function of Panel Aspect Ratio from MARINE COMPOSITES

Stresses and Deflections in Panels

Maximum In-Plane Stress in Beams Subject to Bending

Maximum Shear Stress in Beams Subject to Bending

Stresses and Deflections due to Membrane Effects

Refine Material Selection based on Strain Limits

$$\varepsilon_{out} = \frac{\sigma_{oi}}{E_{oi} \left[\left| \overline{y} - y_i \right| + \frac{y_i}{2} t_i \right]}$$

where:

- σ_{ai} = strength of ply under consideration = σ_{c} for a ply in the outer skin = σ_{c} for a ply in the inner skin
- $E_{\alpha i}$ = modulus of ply under consideration = E_{α} for a ply in the outer skin = E_{α} for a ply in the inner skin
 - \overline{y} = distance from the bottom of the panel to the neutral axis
 - y_{t} = distance from the bottom of the panel to the ply under consideration
 - t_i = thickness of ply under consideration
- σ_r = tensile strength of the ply being considered
- σ_c = compressive strength of the ply being considered
- $E_{\rm f}$ = tensile stiffness of the ply being considered
- E_c = compressive stiffness of the ply being considered

First Ply Failure Based on First Play Critical Strain Limits from the ABS Guide for Building and Classing High-Speed Craft

Refine Material Selection based on Stress Limits

$$SM_{o} = \frac{\sum_{i=1}^{n} FM_{i}}{\sigma_{io}}$$
$$SM_{t} = \frac{\sum_{i=1}^{n} FM_{i}}{\sigma_{ii}}$$

where:

where:

1	SM _o	=	section modulus of outer skin
1	SM,	=	section modulus of inner skin
Ļ	n	=	total number of plies in the skin laminate
	σ _{io}	=	tensile strength of outer skin determined from mechanical testing or via calculation of tensile strength using a weighted average of individual plies for preliminary estimations
	σ	=	compressive strength of inner skin determined from mechanical testing or via calculation of compressive strength using a weighted average of individual plies for preliminary estimations
	FM	=	$\varepsilon_{\min} E_{ci} t_i \left(\left \overline{y} - y_i \right \right)^2$

 $\epsilon_{min}~=~$ the smallest critical strain that is acting on an individual ply

Skin Section Modulus Based on Applied Failure Moment from the *ABS Guide for Building and Classing High-Speed Craft*

Refine Material Selection based on Stress Limits

Typical Laminate Designation

PRIORITIZE DESIGN GOALS Strength Stiffness Cosmetics Cost

Prioritize Design Goals

Stiffness

America's Cup Yacht STARS and STRIPES

Cost

Sunfish Built by Vanguard Sailboats

Norsafe Free-Fall Lifeboat

Cosmetics

Hinckley's Picnic Boat

DETERMINE PRELIMINARY ARRANGEMENT Deckhouse Cockpit PRIORITIZE DESIGN GOALS Strength Stiffness Cosmetics Cost

Determine Preliminary Arrangement

Conceptual Deck Layout for 147-Foot Motoryacht from Espinosa Yacht Design

Deck Layout for the Farr 56 Pilot House Yacht

DETERMINE PRELIMINARY ARRANGEMENT

Deckhouse Cockpit

CONSTRUCTION Solid or Sandwich Male or Female Deck Mold PRIORITIZE DESIGN GOALS Strength Stiffness Cosmetics Cost

Determine Construction Method

Hardware Placement Jig Lowered in Place at Corsair Marine

Alerion 28 Deck Assembly being SCRIMPed at TPI

PRIORITIZE DESIGN GOALS Strength Stiffness Cosmetics Cost

Develop deck structure drawing based on geometric considerations

Distribution of Longitudinal Stress at Hatch Opening from C.S. Smith Deck Buckling Mode Near Hatch Opening from C.S. Smith

IBEX 2002 - Session 202 - Eric Greene

Pedigree 525 Catamaran Showing Spacious Interior (Styling by Phil Aylsworth)

PRIORITIZE DESIGN GOALS Strength Stiffness Cosmetics Cost

Consider Deck Depth Restrictions

Nautica Flush-Deck Military Version 30-Foot RIB

Illbruck Challenge Volvo Ocean Race Yacht

Green Water Deck Loads

USCG 47-Foot Motor Life Boat 47234 Taking a Wave Head On

Consider Fabrication Issues

Deck Layup at Beneteau USA

Deck Overhead Liner Beneteau USA

Deck Being Molded at Sabre Yachts

Installation of Deck Hardware at Sabre Yachts

Consider Hardware, Surface Treatment and Environmental Effects

Detail for Through-Bolting in Sandwich Construction

Rough Weather Sailing on Djuice Dragons Requires Good Non-Skid Deck

Elevated Surface Temperature Considerations for Composite DDG 51 Forward Director Room

Young America, November 9, 1999

Video Courtesy of Jeff Eckland

Deck and Stiffener Laminates

Prototype Corvette Deck Structure Built for the U.S Navy by Sunrez Using UV-Cured Resin