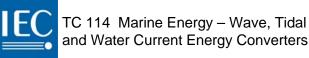


PT 62600-2 Design Requirements for Marine Energy Systems

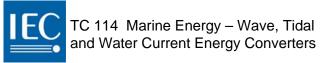
Composites for Marine Energy Systems

Florida Atlantic University Sea Tech Auditorium Dania Beach, Florida November 17, 2009



Clark Little photo

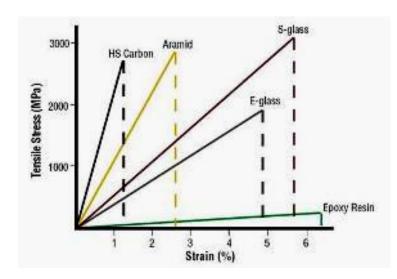
Eric Greene

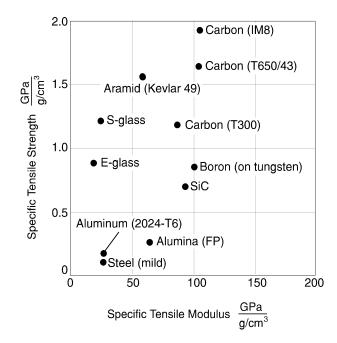

410.263.1348 EGAssoc@aol.com www.EricGreeneAssociates.com

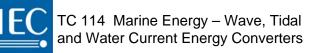
What Are Composite Materials?

- A composite is the combination of materials that results in a greatly improved structure.
- Resin matrices transform from liquid to solid during fabrication to "tie" the structure together.
- Fiberglass, Aramid, and carbon laminates with resins are examples of composites, as is plywood and other "engineered" wood products.
- Resin matrices are either "thermosets" that cure to solids through a non-reversible chemical process called "crosslinking" or "thermoplastics" that can be reformed when heated.

Why Use Composites for Marine Energy Systems?


- Composite materials are not subject to corrosion degradation.
- Complex shapes are easily formed with composites.
- Lightweight composite structures are easy to handle and require smaller control machinery.
- Sandwich laminates are ideal for resisting hydrostatic loads.
- Composite laminates have excellent fatigue characteristics.




Fibers

	Density	Strength	Modulus	Specific Strength	Specific Modulus
	gm/cm ³	MPa	GPa	MPa*	GPa*
E-glass	2.60	3450	72	1327	28
S-glass	2.49	4589	87	1843	35
Aramid	1.44	3623	124	2516	86
Carbon (commercial)	1.76	2415	227	1372	129
Carbon (high performance)	1.76	4830	393	2744	223
Polyethylene	0.97	3000	170	3093	175
Basalt	2.66	2950	90	1109	34
HT steel	7.86	750	210	95	27
Aluminum	2.66	310	75	117	28

* Strength or stiffness divided by density

Resins

	Tensile	Tensile	Tensile	Heat Distortion		
	Strength	Modulus	Elongation	Temperature	Shrinkage	
	MPa	MPa	%	٥C	%	
Ortho Polyester	41	3480	1.2	65	9.00	
Iso Polyester	61	3380	1.6	97*	8.20	
Vinylester	79	3380	5.0	105-120*	7.80	
Laminating Epoxy	83	3680	9.0	110*	0.75	
Multi-Purpose Epoxy	50	3170	10.0	54	0.80	

* Post-cured data

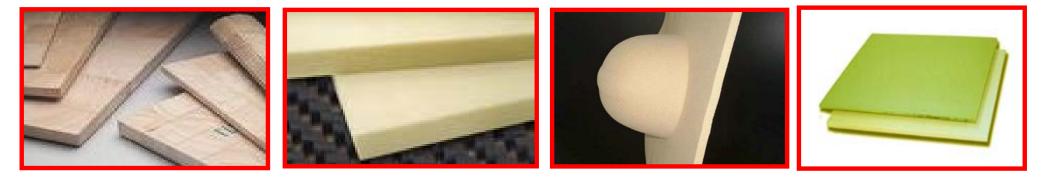
Polyester

- *Polyester* resins are the simplest, most economical resin systems that are easiest to use and show good chemical resistance.
- *Isophthalic (iso)* resins generally have better mechanical properties and show better chemical resistance.

Vinyl Ester

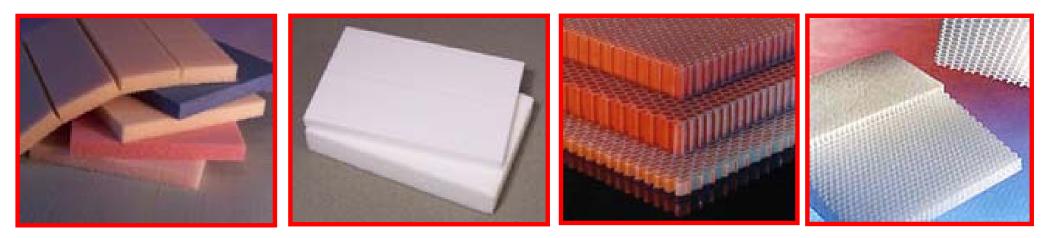
- Superior corrosion resistance
- Hydrolytic stability (blister resistance)
- Better secondary bonding properties
- Excellent physical properties, such as impact and fatigue resistance.

from ATL Composites Pty Ltd


Ероху

- Epoxy resins show the best performance characteristics of all the resins used in the marine industry.
- The high cost of epoxies and handling difficulties have limited their use for large marine structures to date.

PT 62600-2 Design Requirements for Marine Energy Systems

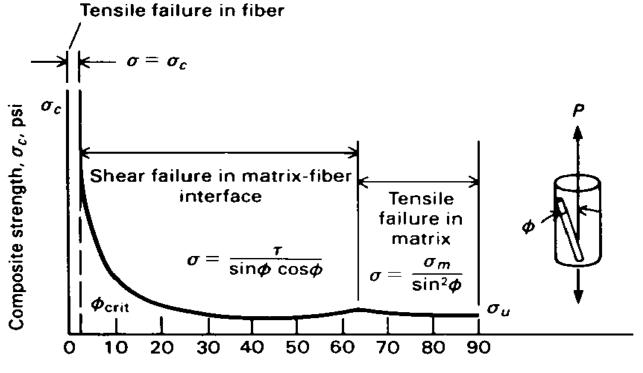


End-Grain Balsa

SAN Foam

Aromatic Polyester Foam

page 5

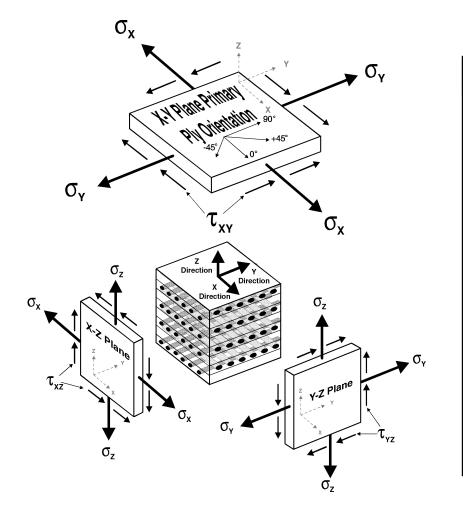

Cross-Linked PVC Foam **PET Foam**

Aramid Honeycomb Polypropylene Honeycomb

Composites for Marine Energy Systems

Nov 17, 2009, Florida Atlantic University

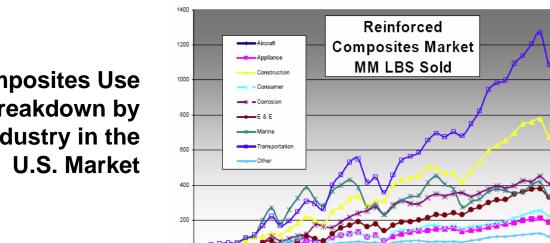
Directional Properties of Composite Laminates



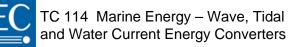
Fiber alinement to tensile axis, ϕ , deg

The strength of composite fibers are dramatically reduced as the angle to the applied load is increased

Laminate Engineering Data


	х	Longitudinal	Tensile Modulus	E_x^t		Compressive Modulus	E _x ^c
	Y	Transverse	Tensile Modulus	E_y^t		Compressive Modulus	E _y ^c
SS	Z	Thickness	Tensile Modulus	E_z^t		Compressive Modulus	E ^c _z
Stiffness	XY	Longitudinal/ Transverse		Shear Modu	ulus	G _{xy}	
Sti	xz	Longitudinal/ Thickness		Shear Modulus		G _{xz}	
	ΥZ	Transverse/ Thickness		Shear Modulus		G _{yz}	
	х	Longitudinal	Tensile Strength	$\sigma_x^{t ult}$		Compressive Strength	$\sigma_x^{c ult}$
٩	Y	Transverse	Tensile Strength	$\sigma_y^{t ult}$		Compressive Strength	$\sigma_y^{c ult}$
Strength	z	Thickness	Tensile Strength	$\sigma_z^{t ult}$		Compressive Strength	$\sigma_z^{c ult}$
Stre	XY	Longitudinal/ Transverse		Shear Strength Shear Strength		τ_{xy}^{ult}	
	xz	Longitudinal/ Thickness				τ_{xz}^{ult}	
	ΥZ	Transverse/ Thickness		Shear Strength		τ_{yz}^{ult}	
Poisson's Ratio							
		Direction:	XY (Major)	YX (Min	or)	ZX	ΥZ
		Notation:	v_{xy}^t, v_{xy}^c	v_{yx}^t, v_y^t	; /x	v_{zx}^t , v_{zx}^c	v_{yz}^t, v_{yz}^c

Engineering design parameters are more complex for a non-homogeneous material


Worldwide Use of Engineering Materials

Shipments, M-tonnes							
	1999		20	04	2009 (est.)		
	Steel	Composites	Steel	Composites	Steel	Composites	
North America	142.4	2.2	152.5	2.3	155.5	2.8	
Europe	330.7	1.4	379.2	1.5	398.2	1.7	
Asia	300.5	1.3	473.9	2.2	548	3.2	
Rest of World	63.5	0.2	80	0.3	92.5	0.4	
Total:	837.1	5.1	1085.6	6.3	1194.2	8.1	
% Change:			29.7%	23.5%	10.0%	28.6%	

1074

Composites Use Breakdown by Industry in the

Examples of Large Composite Vessels

The *Mirabella V*, the largest composite vessel and largest single-masted sailing yacht yet built, was launched in 2004 by VT Shipbuilding. The 75m long super-yacht displaces 740 tonnes The **VISBY** displaces 600 tons (fully equipped), is 73 m overall length with a 10.4 m beam. Material of construction for the hull is sandwich construction carbon fiber reinforced plastic giving a quoted speed of >35 knots.

Examples of Large Composite Marine Structures

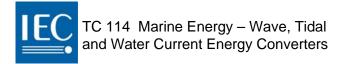
Composite Submarine Bow Dome Infused with Epoxy by Goodrich Composites

Advanced Composite Sail Envisioned for Virginia Class Submarines

Composite Drilling Riser Developed by Aker Kvaerner Subsea

Composites Design Considerations

Design Criteria:


- Strength Limits
- Deflection Requirements
- Buckling
- Vibration

Laminate Failure Modes:

- Microcracking of the Matrix
- Separation of the Fibers from the Matrix (debonding)
- Failure or Rupture of Individual Fibers
- Separation of Individual Lamina from Each Other (delamination)

Additional Sandwich Laminate Failure Modes:

- Core Yielding
- Ultimate Strength, Core Cracking
- Skin/Core Delamination
- Water Intrusion

Design Allowables

Partial Safety Factors:

- <u>Location Partial Factor of Safety</u> accounts for the consequence of failure, that is, whether failure of the particular structural member in question results in total system collapse, or local failure
- Load Partial Factor of Safety accounts for uncertainties in the accuracy, magnitude, nature, or location, of the loads applied to the structure
- <u>Composite Material Failure Mode Partial Factor of Safety</u> accounts for uncertainties quality, or limitations in the ability to predict composite material failure modes with analytical tools and algorithms

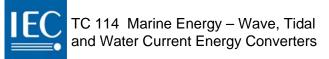
$$F_{\rm s} = F_{\rm s}^{1} \times F_{\rm s}^{2} \times F_{\rm s}^{3}$$

PT 62600-2 Design Requirements for Marine Energy Systems

Manufacturing Processes

nd JD

Resin Infusion

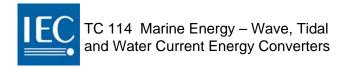

Filament Winding

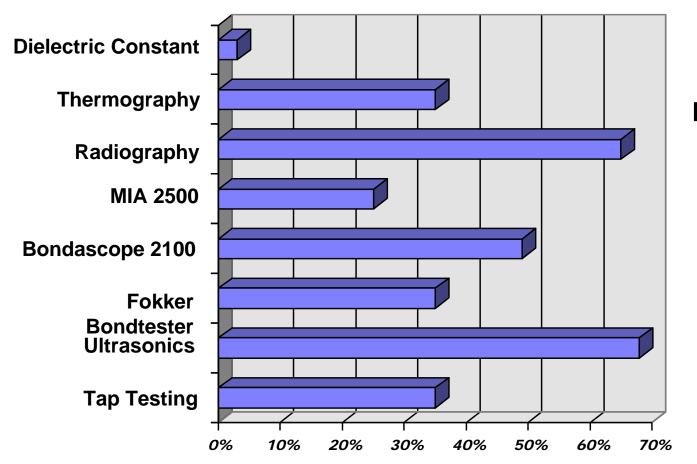
Pultrusion

Prepreg

PT 62600-2 Design Requirements for Marine Energy Systems

Key Processes Parameters


- Mold Production
- Material Handling
- Fiber Wet-Out
- Laminate Consolidation
- - Two Part Female Hull Mold


To vacuum pump Prepreg Prepr

Vacuum Bag Arrangement

- Curing Profile
- Inspection

Nondestructive Evaluation of Large Composite Structures

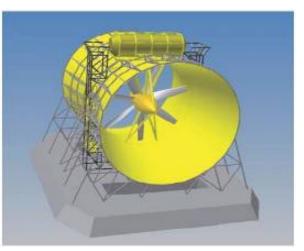
Effectiveness of Various Potential NDE Methods

Defects Considered:

- Impact Damage
- Voids
- Dry Fibers
- Through Cracks
- Delamination
- Uncured Resin
- Excessive Core Filling
- Gap Between Stiffener and Web
- Sheared Stiffener

Bar-Cohen, Nondestructive Evaluation (NDE) of Fiberglass Marine Structures, US Coast Guard report CG-D-02-91

PT 62600-2 Design Requirements for Marine Energy Systems


Rotors and Shrouds

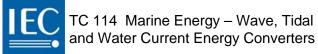
Verdant Power

Ocean Renewable Power

Lunar Energy

OpenHydro

Marine Current Turbines



Hydro Green Energy

Composites for Marine Energy Systems

Nov 17, 2009, Florida Atlantic University

Foundations

AquaBuoy

SEADOG Pump

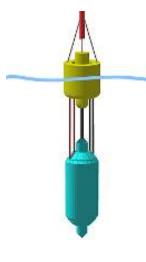
OWEC Ocean Wave Energy Converter

Energetech

AWS Ocean Energy

PT 62600-2 Design Requirements for Marine Energy Systems

Moving Parts

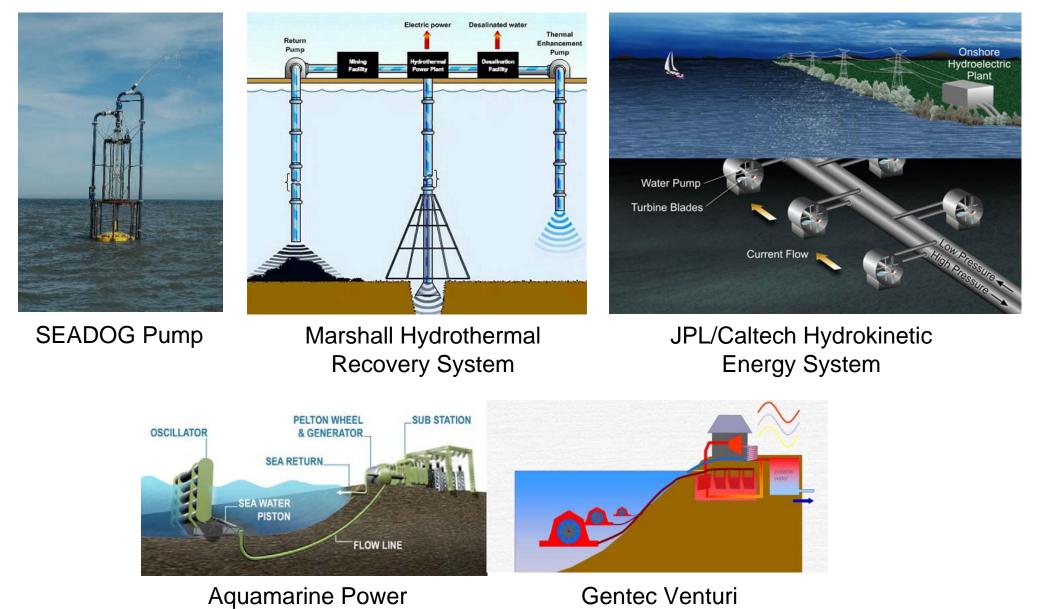

Aquamarine Power

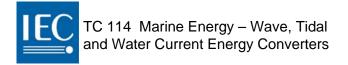
Wavegen

Ocean Power Technology

Wavebob

Wavestar




Sea Snail

PT 62600-2 Design Requirements for Marine Energy Systems

Piping Systems

Summary

- Composite materials are well suited for marine energy devices because they are non-corrosive and have good fatigue life.
- Directional properties of composites permit design optimization but loads, material properties and failure modes need to be defined.
- The physical properties of composite structures are defined during fabrication, so quality assurance procedures are paramount.
- Composites are especially attractive to build complex shapes, when weight is critical, and when manufacturing production quantities.